A few useful relations for fluidics

Send an email to jonas.tegenfeldt@ftf.lth.se if you find any errors!

Einstein relation (for sphere, radius *a*):

$$D = \frac{k_B T}{f} = \frac{k_B T}{6\pi\eta a}$$

At room temperature we have

$$k_B T = 4 \ 10^{-21} J$$

 $\eta = 10^{-3} kg m^{-1} s^{-1}$

$$D = \frac{k_B T}{f} = \frac{k_B T}{6\pi\eta a} = 2.12 \cdot 10^{-13} \ m^2 s^{-1} \frac{1\mu m}{a}$$

For n-dimensional diffusion we have $\langle r^2 \rangle = 2nDt$

Object	Diffusion coefficient [m ² s ⁻¹]	Time to diffuse in 1D		
	Diffusion coefficient [in s]	1µm	1 mm	1 m
Water molecule	2.4 10-9	0.2 ms	200 s	7 yrs
10nm radius bead	2.1 10-11	20 ms	6 hrs	700 yrs
100nm radius bead	2.1 10-12	0.2 s	60 hrs	7000 yrs
1µm radius bead	2.1 10-13	2 s	1 month	70000 yrs

Pressure driven flow

$$Q = \frac{\Delta p}{R}, \quad v = \frac{\Delta p}{A R}$$

Flow resistance for a shallow slot with w>>h
$$R = \frac{12\eta L}{wh^3}$$

Flow resistance for a cylinder

$$R = \frac{8\eta L}{\pi r^4}$$

So that for a cylinder and a shallow slot the velocities are

$$v_{cylinder} = \frac{\Delta p}{8\eta L}r^2, \quad v_{slot} = \frac{\Delta p}{12\eta L}h^2$$

A few examples for water at room temperature T=25°C in a cylinder that is L=1mm long.

Radius	VELOCITY [length/time]			FLOW [volume/time]		
	10mBar	100mBar	1Bar	10mBar	100mBar	1Bar
10nm	10nm/s	100nm/s	1µm/s	0.2 aL/min	2 aL/min	20 aL/min
100nm	1µm/s	10µm/s	100µm/s	2 fL/min	20 fL/min	0.2 pL/min
1µm	100µm/s	1mm/s	10mm/s	20 pL/min	0.2 nL/min	2 nL/min
10µm	10mm/s	100mm/s	1m/s	0.2 µL/min	$2 \mu L/min$	20µL/min
100µm	1m/s	10m/s	100m/s	2 mL/min	20mL/min	0.2 L/min

The Reynolds number is the ratio between inertial forces and viscous forces.

$$\operatorname{Re} = \frac{v\rho L}{\eta}$$

The Reynolds for water at room temperature T=25°C

Velocity	Channel diameter				
	1µm	10µm	100µm	1mm	
100µm/s	10 ⁻⁴	10 ⁻³	0.01	0.1	
1mm/s	10 ⁻³	0.01	0.1	1	
10mm/s	0.01	0.1	1	10	
100mm/s	0.1	1	10	100	
1m/s	1	10	100	1000	

Inertia dominates for Re >> 1 and viscosity dominates for Re << 1

As of rule of thumb we have the following, although the exact limits are debated: Laminar flow for Re < 30Turbolent flow for Re > 2000